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PROBLEM-SOLVING
ABILITY

Mickeliue T. H. Chi
Kobert Glaser
Unversaty of Pittsburgh

Solving problems is a complex cognitive skill that characterizes one of the most
intelligent human activities. From childhood onward, we actively solve prob-
lems presented to us by the world. We acquire information about the world, and
organize this information into structures of knowledge about objects, events,
people, and ourselves that are stored in our memories. These structures of
knowledge comprise bodies of understanding, mental models, convictions, and
beliefs that influence how we relate our experiences together, and how we solve
the problems that confront us in everyday life, in school inour jobs, and at nlay.

Thiv researct program condudled at the Learning Research and Development Center,
Lnnversity or Pritshurgh e suppanted in pant by Contract no NOOO14-79--C0215 NR 157430
121980 otthe Otice of Naval Research. Personnel and Training Recearch Programs. Psycholog-
wwal Sciences [osior and i part by the National Institute of Edu ation The authors are grateful to
Tex! Rewos tor comments and editing
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228  PROBLEM-SOLVING ABILITY

How do humans develop their abilities to solve problems in these situa-
tions? People differ, children from adults, and experts from novices, and these
differences are based on cognitive processes and mental organizations thai
humans have in common, and that characterize their problem-solving abilities.
In this chapter we emphasize the general characteristics of human problem-
solving ability. Systematic theory on the mechanisms of human problem solving
1s a relatively recent advance in nsychological science, and knowledge of .
fundamental processes provides a basis for understanding the development and
acquisition of our abilities to think and solve problems.

Scientists interested in problem solving have studied various classes of
piablems, each having its own task characteristics, which determine to a large
extent the behavior of the problem solver and the strategies appropriate to
tinding solutions. 111 2ddition, as we have seen in the preceding chapters, the
experience and knowledge brought to the situation by the problem solver
determine whether and how a solution will be reached. Puzz' problems, like
tic-tac-toe or combining the links of several small chains int a larger chain . ith
the minimal number of moves, require little knowledge of a subject-matter
domain. Solving problems in elementary physics, however, requires more
subject-matter knowledge, such as knowiedge of force diagrams and of certain
laws of physics. Puzzle problems have been studied largely because they are not
complicated by needing much background knowledge, and because they reveal
the strategies that people employ in searching for a solution. Detailed observa-
tions of performance in puzzle situations have been accompanied by computer
simulations of these performances that precisely describe certain general
strategies or heuristics that people use when they are confronted with novel
situations. As a result of extensive work with these computer models of problem
solving, the main mechanisms for solving these well-structured puzzle problems
are fairly well understood. The strategies used depend on attention to perceptual
cues, the goals and subgoals held in memory, and the discovery of sequential
pattérns of correct moves.

Research has also been carried out on the nature of expert problem solving
in knowledge-rich domains like chess playing and school problems in physics
and mathematics. investigation of the performance of experts and novi. s in
domains requiring extensive knowledge has deepened our understanding of the
kinds of knowledge required for efficient problem-solving ab” . In particular,

the investigation of problem solving in domains requiring ext . .ive knowledge

has shown how the knowledge organizations acquired by the problem solver,
which are stored in long-term memory, influence the perceptual processes and
strategies of problem solving

Two important factors, then, that influence problem solving are the nature
of the task (the task enviroment; and the kind of Anowledge brought to the
problem by the solver. These two factors dictate the organization of this chapter.
Inthe first main section, we will consider puzzle problems and general proces-
ses of solution. In the second we will discuss solving of problems that require
domain knowledge. We will also consider various task environments that in-
vohve insight creativity and ill-structi.red problems. Qur goal, in the problem-
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What Is a Problem? 229

solving task of writing this chepter, is to give you an understanding of some of the
mechanisms that underlie problem-solving abilities. We can now begin by
defining the various types of problems that have been studied.

What ls_ a Problem?

A problem is a situation in which you are trying to reach some goal, and
must find a means for getting there. Figuring out puzzles, solving algebra
problems, deciding how to budget a limited amount of money, trying to control
inflation and reduce unemployment, are all examples of problems that we as
individuals and as a society frequently encounter. Clearly, these problems cover
an enormous range of difficulty and complexity, but they do have some things in
common. They all have some initial state, whether it is a set of equations or the
state of the economy, and they all have some goal. To solve the problem, you
must perform some overations on the initial state to achieve that goal. Often
there are some rules that specify allowable operations, and these are generally
called constraints.

Puzzles are one form of problem with which we a-e all familiar. The Tower
of Hanoi puzzle (shown in Figure 10.1) is a typical example, and has received a
great deal of attention from psychologists. It consists of three pegs and a set of
disks of different sizes. Inthe initial state, the disks are stacked up on the first peg
{the top displav in Figure 10.1) in order of decreasing size (like a pyramid), and
the goal i1s to move all the disks onto the third peg, maintaining the pyramid (the
bottom display in Figure 10.1). The constraints in this problem are that the solver
can never place a larger disk ontop of a smaller one, and that only one disk may
be moved at a time.

Although puzzles are interesting, the kinds of problems that we most
frequently encounter fall into two types: classroom problems and real-world
problems. An algebra problem where we have to find the unknown quantity
typities our standard notion of a probiem. Students spend a good deal of time
learning to solve various kinds of classroom problems in such areas as
mathematics, physics, and chemistry. A distinct difference between puzzles and
classroom problems is that a fair amount of knowledge of a specific subject area
is necessary for the solution of the classroom problems. Although even a young
child can move a disk from one peg to another, solving an algebr . roblem
requires knowing when and how to apply a whole set of rules for ias.tpulating
equations. An example of a fairly complex algebra problem can be found in Box
10.1.

Often the mnstimportant and difficult problems we have to solve are those
that we encounter in evervday life outside the classroom. Such problems range
from finding our wav about in a ¢itv. to elevating ourselves out of a period of
depression In both cases, we have a clear initial «tate (being lost at location A or
tecling depressedi. and a clear goal (wanting to be at location 8 or feeling
elated’ The solution for the first problem might be ether calling a taxi, asking
directions or reading a map

6



230 PROBLEM-SOLVING ABILITY
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Figure 10.1
The Tower of Hanoi.
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The puzzles, classroom, and real-world problems described so far are all
welldefined. Thatis, you can readily recognize when the problem is solved. We
know that the Tower of Hanoi problem is solved when the disks have all been
transterred to the third peg. An algebra problem is solved when a quantity for the
unknown is found (although it could be the wrong answer!. Likewise, we know
when we fevl less depressed. and we know that we have accomplished our goal
of finding our way when we are at location B.

There is another class of problems, called /// defined. These are generally
problems in which one or several aspects of the situation is not well specified.
Examples are composing a poem, or designing a house. The general nature of

Q 7




Puzzle Problems and Processes of Solution 231

R
Box 10.1

The Smalitown probiem

Because uf their guiet wavs. the inhabitants of Smalltown were especially upset by the
ternble New Year's Eve auto acadent which claimed the life of one Smalltown
readent The facts were these Bath Smuth and Jones were New Year's Eve babies, and
each had planned a surprise visit to the other one on their mutual birthday. Jones had
started out for Smith's house traveling due east.on Route 210 just two minutes after
Smuth had left for Jones house. Snmith was traveling directly south on Route 140. Jones
was traveling 30 mules per hour taster than Smith even though their houses were only
tnve mules apart as the crow flies Therr cars crashed at the right-angle intersection of
the na o highways Officer Frankling who observed the crash, determined that Jones
sas traveling halt agam as tast as Smuth at the time of the crash The crash occurred
nearer 1o the house of the dead man than to the house of the survivor. What was the
name of the dead man?

e e — -

these problems s that their descriptions are not clear, and the information
needed to solve them is not entirely contained in the problent statement;
consequenthy, 1t s even less obvious (than in well-defined problems) what
actions to take in order to solve them.

Puzzle Problems and Processes of Solution

Well-structured puzzle problems have been traditionally studied by
pavchologists and have received particular attention in the last two decades.
Therr popularity arose from two related considerations.

First. with the advent of computer science and its accompanying notions
and techmques of computer simulation of human behavior (Newell et al.,
1958, psvehologists were particularly interested in rigerous investigation of the
basic processes of solving problerns. The technique used was to have a subject
“think out loud” whife solving a given problem. This problem-solving protocol is
tape-recorded. transeribed, and then intensely anaiyzed to find out just how the
subject tried to solve the problem. The problem-solving strategies used by the
subject are then simulated in a computer program, to see if the program can
produce similar solution patterns,

Second. puzzle preblems require very litile hackground knowledge and
ver can be very ditficult to «olve In such tasks, differences in individuals’
abilities to solve problems can be attributed to differences in some basic under-
ving problem-sohing processes rather than to greater or lesser subject-matter
knowledge Puzzle problems therefore lend themselves particularly well to
uncen ernng the underiving colution processes, by tracing the sequence of opera-
tons apphed to trandorm the mitial state 1o the goal state.

The tocus of modern cornitive pachologists on processes is in contrast
with the earlier problem-solving research by Gestalg psychologists of the 1930s.
The early work dealt mosthv with insght problems, and emphasized how

§



232 PROBLEM-SOLVING ABILITY
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appropriate changes in ihe representation of a problem could lead to solution. A
typical insight problem is the two-string problem (Maier, 1931). Two strings are
hung from the ceiling. The object is to tie them together, but they are too far apart
for a person to reach both of them at the same time. A book of matches, a few
pieces of cotton, and a screwdriver are on the table nearby. The necessary

“insight for solving this problem comes from 4 person recognizing that the'

screwdriver can be used in other than its usual function. Here it may be tiedto
one string, to create a pendulum that can be swung to the other string. This early
research focused on the conditions that impeded or facilitated problem solving,
and on how intuitively improbable responses could become more probable. For
example, would putting the screwdriver among a different set of items on the
table make it easier for the solver to recognize that a screwdriver can be used in
an unfamiliar way, as a weight?

The information-processing approach, represented by the work of Newell
and Simon (1972), significantly changed problem-solving research, by turning
attention away from the conditions under which solutions can be reached, and
toward the companent cognitive processes involved that transform the initial
state of the problem to the final goal state. In order to make this problem a
manageable one to study, many researchers in the late 1960s and early 1970s
concentrated on a class of puzzle-like problems called move or transformation.
problems. These problems all have clear initial and goal states, and a small set of
weil-defined operations (moves) that can successively transform the initial state
to the goal state.

The Tower of Hanoi is one such problem, and it has been extensively
studied. A spatial metaphor is useful in analyzing this kind of problem. The states
of the problem are represented as points in a space. The possible operations on
each state are represented by lines leading to the states that these operations
produce. Because there is only one initial state, and typically more than one
operation can be applied to each state to generate several plausible transformed
states, this solution space resembles an upside-down tree. Part of the solution
space for the Tower of Hanoi is shown in Figure 10.1.

One way to look at the process of solving a problem is to think of it as a
search through the solution space. The space contains many possible paths, but
only one (or a few) leads to the goal state. The distance traveled down a
particular branch of the tree, the levels in Figure 10.1, is often referred to as the
depth (D) of search, and th2 number of alternatives at each point is the breadth
(B). The total number of possible paths is equal to B”(if 8 is the same number at
every state). That is, the number of alternative paths to be considered explodes
exponentially.

Representation

The representation of a problem consists essentially of the solver's inter-
pretation or understanding of the problem. Researchers have found that the
representation is very important in determining how easy a problem is to solve.
In the two-string prablem. for example. insight is really representation. The’
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Puzzle Problems and Processes of Solution 233

initial representation of the screwdriver must be broadened to include the fact
that it is a heavy object, which can therefore be used as a pendulum weight.

The representation of move problems, like the Tower of Hanoi, is fairly
straightforward, because the initial and final states (and the permissible moves)
are clearly spelled out. However, we can conceive of situations where the
representation fails to embody one or more aspects of the probiem. For example,
if the constraints on the operations are not properly encoded, then the solution
space could be enlarged unnecessarily. For example, when children try 1o solve
the Tower of Hanoi problem, they may have trouble remembering the constraint
that a larger disk may not be placed on a smaller disk, or they may forget what the
goal state should look like (Klahr and Robinson, 1981). If the children forget a
constraint, thev essentially add branches to the solution space, making the
correct path harder to find. The resulting search space is referred to as the
solver’s problem space. The dotted path from State A to State 8 in Figure 10.1
shows an illegal addition to the solution space.

In cedain problems, a solver might also add unnecessary constraints,
thereby taking away branches, so that the proper solution path is not even
present in the problem space. The problem thus becomes impossible to solve.
Adding or deleting branches because of improper representation is common.
One example of adding a constraint to the representation is to be seen in the
problem of drawing four straight lines through nine dots arranged as three rows
of three without retracing or lifting the pencil (see Figure 10.2a). Almost invari-
ably, solvers unconsciously add the constraint that the line cannot go outside of
the square indicated by the dots, as shown in Figure 10.2b.

The representation of a problem can also be faulty if solvers encode the
goal state improperly. This makes the problem impossible to solve, because
solvers *hen do not know what to search for. An illustration of a problem in
whic h the goal state is improperly encoded 1s the well-known sixteen-matches
problem (see Figure 10.3a). The goal is to form four squares, given the constraint
that only three matches may be moved. One of the common causes of error is
that the goal is often represented as in Figure 10.3b, instead of in arrangements

R

Figure 10.2

The nine dots problem . (a) initial figure: (b) typical attempts at solution; (c) correct
solution.

(a) (b) {c)
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/234 PROBLEM-SOLVING ABILITY

like those in Figure 10.3¢, where each square uses up four sticks. That is, the
initial representation of the goal does not emphasize that sixteen sticks can make
up four squares perfectly, so that no stick should be shared by two squares.
(Another way to look at this is that the representation did not contain the
constraint that no stick should be shared by two squares.)

The difficulty in solving move problems is not generally related to solvers’
misrepresenting the initial state, but rather to their omitting constraints or not
having a clear representation of the goal state, as just described. However, other
puzzle problems, such as the two-string problern, are difficult precisely because
of initial-state representation. For problems of greater camplexity, the initial
representdtion is even more important, as we will discuss later in this chapter.

Searching for a Solution

The process of finding a solution to a problem can be visualized as a search
through the paths in the problem space until one that leads to the goal is found.
Since move problems are generally not difficult to represent, researchon solving
move problems has tended to corcentrate on uncovering the strategies that
effective problem solvers use to find a solution in the problem space. There are a
variety of strategies for carrying out this search.

One strategy is to try paths randomly, hoping to stumble on the goal. A
random search is adequate if your search space is small. However, since the
search srucc expands exponentially for most problems, the chance of a random
search being successful is quite small.

Anaother obvious strategy is that of systematically searching the entire tree.
in a depth-first search, for instance, you search a particular path all the way to

. the bottom. If this state is not the goal, you back up one level and then stan
searching down again via an untried path. When all paths from a particular state
have been tried, you back up one more level and start down again, and so on.
This method (and any such exhaustive method) requires much recordkeeping to
keep track of which paths you have tried, and which state you should back up to
when ail current links have been tried. Except for very simple problems, the
memory required for this recordkeeping is too great for human beings. Exhaus-
tive methods are often not feasible even for computers to use.

The key to the effective st- **egies actually used by humans is to reduce the
search space by considering only one branch or a very few branches at each
point. For instance, de Groot (1966} found that chess players use a strategy that
canbe called depth-first, because they initially follow one path straight down for

—
Figure 10.3
The move three matches problem (see text for discussiont,
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a few moves. They make no attempt to be exhaustive or to backtrack systemati-
cally, however. Instead, they tend to jump back to the beginning position or to
some important intermediate point and gradually explore just a few alternative
branches. Obviously, if only a few alternatives at each point are going to be
explored, they had better be good ones; so good strategies are those that guide
the selection of promising moves or the elimination of unpromising ones.

Means-ends analysis. A powerful strategy for finding good alternatives, which
takes the goal state into account, is means/ends analysis. This strategy was used
as an important search strategy in one of the earliest attempts to create a
computer program to solve problems, the General Problem Solver (Ernst and -
Newell, 1969). The general idea is to discover what differences there are
hetween the current state and the goal state, and then to find operations that will
reduce them. If there is more than one such operation, the one that reduces the
largest difference is applied first. In other words, find the hest means to achieve
the desired end. ‘

Inthe Tower of Hanoi, the differences are simply that disks are not on the
proper peg in the proper order. At the initial state, the move that does the most to
reduce the difference is placing the small disk on the third peg (see state Cin
Figure 10.1). Note, however, that this move actually introduces a new differ-
ence, because the disk is in the wrang (bottom) position on the correct (third)
peg. Being in the wrong position must therefore be defined to be a smaller
difference than not being on the correct peg. That is, state Cis the correct move,
because there is less of a difference between state C and the goal state than
between state A and the goal.

Means‘ends analysis, however, is not guaranteed to find the solution. At
state [2in Figure 10.1, for example, the correct move is to take path y, even
though it does not reduce the overall difference. General methods like this one,
which reduce the number of moves that must be considered but are not guaran-
teed to succeed in all situations, are called heuristics,

Means‘ends analysis can be used to work not only from the initial state to
the goal, but also backward from the goal. In this situatian, the strategy is to find
an operation (such as path m in Figure 10.1) that can produce the goal state
when itis applied to a state which is closer to the initial state (e.g., state F). Inthe
Tower of Hanor example, to find state F, we can transform state £ via path z,
working torward. To work backward from the goal, we want to find the trans-
formation there, path m) that, when applied in a forward manner, will take us
from state £ to the goal. Working backward, however, two states (states Fand H)
¢an be transtormed from the goal, only one of which (state F) overlaps with one
of the two states (states F and G) generated in a forward way, from state £. So by
combining forward and backward searches, we can select the right move almost
by default. .

An additional bepenit of working backward (which is unfortunately not true
0 the Tower of Hanar problem), is that often the number of “backward
branches” to be considered is smaller than the number when working fonward,
Another ditference between the forward and backward strategy is that we can try
out moves as soon a« they are decided on in the forward strategv, whereas

12



286 PROBLEM-SOLVING ABILITY

backward strategy requires a chain of moves to be selected first. We then apply
them in the same order as they would have been applied if we had been using the
forward strategy. So working backward requires planning, and is therefore more
sophisticated than forward strategy.

Although the Tower of Hanoi is quite a simple puzzle, ineans/ends analy-
sis is useful in more-complicated situations. Newell and Simon (1972) observed
subjects using it in solving cryptarithmetic problems (in which an arithmetic
problem is presenied with letters standing for numbers, and the solver must
discover which letter stands for which number). Reed and Simon (1976) show
how it is used on the missionaries and cannibals problem (in which one boat of
limited capacity must be used to transport missionaries and cannibals across a
river without anyone being eaten), and Atwood and Polson (197 <) demonstrated
its use in the water-jug problems. Simon and Simon (1978) noted a subject who
worked backward while solving distance-rate-time problems; and Larkin et al.
(1980) observed similar solution strategies being used to solve physics problems.

Means/ends analysis does have limitations, of course. In particular, it will
fail if there is no operation that will reduce the remaining differences. Such an
occasion will arise when a problem requires a detourto get to the goal. The term
detour generaily reters to a path that increases the differences between the
current and goal states, at least temporarily. This is the situation that was
mentioned in _.ate Din Figure 10.1. Here the differences from the goal state are
that the large and medium disks are on the wrong pegs, and the small one is in
the wrong position even though it is on the correct peg. None of the available
moves actually reduces the overall difference. The correct move, which is
moving the smaliest disk (taking nath y), actually produces a larger difference
than the previous state.

Subgoaling. A very useful strategy, which can be used in conjunction with
means/end analysis, is subgoaling. Subgoaling is simply picking out an in-
termediate state on the solution path to reach as the temporary goal. In effect,
subgoaling divides a problem into two or more subproblems, thus transforming
the entire search space into two or more spaces of smaller depth.

Choosing a subgoal well can allow you to use means/ends analysis in
situations where, by itself, it might not reduce a difference (as when a detour is
needed). In the Tower of Hanoi, one useful subgoal is for you to get the largest
disk onto its proper peg, because you must put it there before you can place the
others on top of it. Look at state D in Figure 10.1 again, with that subgoal in
mind. Now the differences for you to consider are that (a) the large one is on the
wrong peg and (b) the small one is blocking it. By using means/ends analysis
now, you v.."" ~ee that the correct move (taking path y} does reduce the differ-
ence, whe.. .. the less-efficient ones do not. Subgoaling can therefore iemove
the apparent need to move awas from a goal in order to get to it. In effect, when
you use subgoaling with means‘ends analysis. you remove the lrmtthtnon ofi
means ends analvsis. :

Subgoaling also reduces the search space significantly. Remember that the
size of the space increases exponentially with its depth. If the subgoal we have

1 3 ,‘
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selected i> onthe solution path, then, once we havereac’ - it, we have reduced
significantly the number of alternative paths to be considered to reach the goal,
as Figure 10.4 shows. The obvious advantage to subgoaling is that we have
divided a larger problem into smaller ones.

A pragmatic difficulty, though, is how to choose useful subgoals. There are
several heuristics for finding them. One way is for you to work backward first,
and then use the new state that you have reached as the subgoal to work forward
to. Another mathod is to decompose the main goal. In the Tower of Hanoi
problem, the goal is for you to have the set of disks on the third peg in a certain
order, and an obvious sukgoal is for you to first put the larger disk on the third
peg. In order for you to achieve this subgoal, the ihird peg must be empty and the
large disk must be uncovered. in other words, the other disks iust be on the
middle peg. Because large disks can never be on top of small ones, a two-disk
subgoal is generated, with the middle ‘peg as the goal peg. This form of the
subgoal is very useful when there are more than three disks in the problem,
because it decomposes the puzzle into a hierarchic series of smaller problems.

Another heuristic for setting subgoals is for the solver to consider only one
constraint at a time, which serves systematically to narrow down the problem
space. Actuaily, this may be the way most people solve some everyday prob-
lems, since they may not initially think of all the constraints involved. Suppose,
for example, that you are buying your first house. Your initizi constraint is that
the price be under $50,000. Aftar looking around at a few houses, you realize
that in order to cut down on the heating bills, you need a well-insulated
contemporary house rather than one of those old mansions. Thus, ycur next

Figure 10.4
Reducing the search space with a subgoal.
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238 PROBLEM-SOLVING ABILITY

search will be limited only to smaller contemporary houses, but still under the
initial price constraint of $50,000.

Al*'~ough subgoaling seems theoretically to be an ideal strategy, research
on the enect of providing a subgoal shows that it does not always help. Providing
a subgoal for problem solvers can instead increase their cunfusion, because they
do not seemto know how to continue after the subgoal has been reached. Hayes
(1966), for example, found that people took longer to soive problems when a
subgoal was provided in the statement of the problem, even though the subgoal
helped them reach the situation quite easily, than when they were allowed to
solve the problem by their own methods.

Generate-and-test. A heuristic that is often useful in mary cases is for you to
generate a set of possible solutions to a given problem directly, and then to test
each one to see if it is the correct solution. Consider the task of opening a small
combination lock. Possible solutions are all short series of numbers (usually
three) that fall between the smallest and largest numbers on the dial. These are
easy to generate. Testing is also easy: just turn the dial and see if the lock opens.
Fortunately (or unfortunately, depending on your situation), thz toial number of
possible solutions is quite large; succ2ss is certain, but testing all 999 combina-
tions (at one per second) would take 17 minutes.

Generate-and-test is a useful technique only when it is reasonably easy for
you to generate the cet of potential solutions ad test them. This may occur, for
example, when the set is fairly small and the path from the current state to the
solution is unimportantto you, or when you have difficulty generating the search
space.

Particularly relevant examples of the generate-and-test strategy are scien-
tific research and medical diagnosis. In research, an investigator will generate a
hypothesis to explain some observed phenomena (the behavior of humans
solving problems, for instance) and then devise experiments to test it. In medi-
cine, physicians typically make a tentative diagnosis (or hypothesis) based on a
partial description of the initial state (the patient’s symptoms), and then order
various examinations and laboratory tests to confirm or disconfirm the diagno-
sis. Even if the initial hypothesis is disconfirmed, the testing process generally
adds new information about the initial state and can lead to new hypotheses.
These examples lend themselves particularly well to a generate-and-test heuris-
tic, mainly because it is obviously difficult for us toind a set of operations that
can transform the initial state into the goal state.}in the medical diagnosis
example, the initial state consists mainly of symptgns, and the goal state is to
explain what causes them. Typically, this initial s¥dte is incompletely known;
some of the symptoms may be irrelevant; and there may be multiple causes
at work ta patient may be suffering from heart, lung, and kidney problems,
for instance' In such a situation, it is much easier to hypothesize a particular
cause, find out what its effects would be, and compare them with the known
symptoms.

In sum, the outcome of the research on puzzle-type problems has been
very useful in uncovering several standard and powerful general-purpose prob-
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lem-solving techniques: means-ends analysis, subgoaling, and generate-and-
test. These heuristics have been observed to be used across a wide range of
problems, including puzzles, physics problems, and medical diagnosis.

Domain Problems and Knowledge

Although research on puzzle problems, particularly move probiems,
flourished weli into the 1970s and provided valuable insights into the kinds of
general problem-solving strategies people use, researchers found, when study-
ing more-complicated kinds of problems, that strategies did not, by themselves,
sufficiently describe problem-solving performance. Knowledge of the problem
domain is also important, and can influence the use of general problem-solving
heuristics. Striking demonstrations of the influence of knowledge on problem-
solving processes were provided by researchers in both cognitive psychology
and artificial intelligence. In cognitive psychology, de Groot (1966) and then
Chase and Simon (1973a,b) explored what makes master chess players different
from less-expert ones. De Groot obtained protocols from former world cham-
pions and from some fairly skillful club players as they tried to find the best move
in a given situation. Surprisingly, he found no strategy differences. All players
tended to consider the same number of moves. They also locked ahead about .
the same number of moves as they tried to evaluate each move, and they used
the same strategy to guide this search. In contrast to other players, experts simply
recognized the best move and gave it first consideration, evaluating the other
moves only as a way of double-checking themselves. This ability to percive the
problem in a way that restricts the problem space has since been shown to occur
in other areas as well. For instance, in medical diagnosis research, both experts
and novices are found to use the same kind of generate-and-test heuristic. The
experts, however. start with a more accurate hypothesis (Elsteinetal., 1978). So
what differentiates an expert problem solver from a nonexpert is not the use of
different or more powerful heuristics, but an ability to choose the best path to
solution without considering all the others.

Research in artificial intelligence aimed at creating chess-playing pro-
grams (e.g., Wilkins, 1980) has further demonstrated that human skill is not
based on strategies to guide search through the solution space. The number of
possivle moves at a given position can be fairly large, perhaps 30 or 35, and
because the size of a search space increases exponentially with each subsequerit
move on a given possible path of play, the size of the chess space is extremelv
large (somewhere around 10'%° paths). Even the most powerful computers
cannot search this large space entirely, and it must be drastically reduced by
using sophisticated computational strategies to evaluate and eliminate moves.
Although these programs can play at tournament level, they succeed because
they can do far more searching than humans, using complex statistical strategies
to compute and evaluate the best move in a way that humans do not. Even with
these advantages. they still cannot match the best players. Clearly good chess
plavers do something very different from searching through the space for a good
maove. :
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The evidence indicates that what humans actually do is to build up an
extremely large store of knowledge about typical chess positions ihrough vears
of experience. De Groot (1966) provided a clue when he found that chess
masters, when shown a chess position for only five seconds, were able to
remember it with very high accuracy, whereas the less-expert players couid not.
This difference could not be attributed to the experts’ superior visual memory,
because when random board positions were used that were not like chess
patterns, masters did as poorly as novices (Chase and Simon, 1973a). Using very
simple techniques, Chase and Simon showed that the masters were actually
perceiving groups of pieces, or chunks. They asked subjects to reproduce from
memory board positions that had just been shown to them, or to copy a position
from one board to another. During the reproduction task, groupings could be
detected if significantly longer pauses occurred after the placement of several
individual pieces in quick succession. Because the contents of a chunk are
closely associated in memory, once a chunk is accessed, recall of its component
pieces will be rapid. However, more time is needed to access another chunk.
Whi n masters were copying a position, clear evidence of grouping could be
detected by their periodic glances at the board. The subject would turn to look at
the board, place a series of pieces, then look back again, place the next series of
pieces, and so on.

Significant pauses and head turns, as evidence of chunking, were observed
with both expert and novice subjects. Hov 'ver, expert groupings contained
three to six pieces, whereas novice groupings contained only one ortwo. It is the
larger sizes of the experts’ chunks that enabled them to remember so many more
pieces from a chessboard than did novices. Moreover, the pieces in the expert
patterns were related in identifiable ways to chess knowledge. They constituted
very common patterns, such asa castled-king or a pawn chain, or local clusters
of pieces. Additional support for the existence of chunks comes from eye-
movement studies. When experts were asked to analyze a board position, their
eye fixations showed that they were concentrating on groups of pieces, such as
those in important attack and defense relationships (Simon and Barenfeld,
1669).

Differences in chunking between experts and nonexperts have been
observed in other domains, as well. In electronics, Egan and Schwartz (1979)
found that skilled technicians reconstructed symbolic drawings of circuit dia-
grams according to the functional nature of the elements in the circuit, such as
amplifiers, rectifiers, and filters. Novice technicians, however, produced
chunks based more on the spatial proximity of the elements. When Akin (1980)
asked architects to reconstruct building plans from memory, several levels of
patterns were produced. First, the architects recalled local patterns consisting of
wall segments and doors, then rooms and other areas. then clusters of rooms or
areas In other words, the reconstruction processes exhibited a hierarchic pat-
tern of chunks within chunks ,

The important implication of this research is that when experts look at an
apparenth complicated situation. they are able torepresent it in terms of a small
number of patterns or chunhks If the situation is very intricate. as with the
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architectural drawings, their knowledge is further organized irito embedded sets
or hierarchic structures.

How Structured Knowledge Facilitates Problem Soiving

Although understanding the cognitive processes involved,jn finding'a good
chess move is clearly a difficult and challenging problem for analysis, we are
especially interested in what these findings tell us about solving the kinds of
problems we encounter in the classroom and in life in general. Remember that
the initial representation of a problem is very important in determining how easy
the problem is to solve. Just as a chess player’s knowledge allows a representa-
tion of a given situation to be formed, a problem solver’s knowledge somehow
determines the problem representation. Then the proper problem-solving proce-

-dures, if they are known, must be retrieved from memory and applied. It is the

problem solver's representation that guides retrieval of appropriate solution
procedures,

In order to consider this process of representation in more detail, we will
find it very helpful to use the concept of a schema. Recall that a schema is a
theoretical construct which describes the format of an organized body of knowl-
edge in memory. Researchers conceive of a schema as a modifiable information
structure That represents generic concepts stored in memory. Schemata repre-
sent knowledge that we experience, such as the interrelations between objects,
situations, events, and sequences of events that normally occur. In this sense,
schemata contain prototypical information about frequently experienced situa-
tions, and they are used to interpret new situations and observations {Rumelhart,
1981). Often a great deal of relevantinformation is not apparent, so that you may
have trouble understanding a situation without filling in the missing data by
means of prior knowledge. Estes (National Academy of Sciences, 1981) explains
this point by describing the following vignette:

At the security gate, the airline passenger presented his briefcase.
It contained metallic objects.
His departure was delayed.

In order to understand this commonplace incident, an individual must
already know a good deal about air terminals. Such prior knowledge is repre-
sented in memory by a schema that specifies the relations between the roles
played by various people in the terminal, the objects typically encountered, and
the actions that typically ensue. Schema theory assumes that there are memory
structures (schemata) in memory for recurrent situations that are experienced,
and that a major function of schemata is to construct interpretations of new
situations. ‘

The objects of & schema may be thought of as variables or slots into which
incoming information can fit. If enough slots of a particular schema are filled. it
becomes active An active schema can then guide you to seek information to f;
its remaining slots. If such additional information is not available in the environ-
ment, then you will fill its slots with information typical of a particular situation,
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T activate its procedures, and access as needed any other knowledge it contains.
in effect, the schema is a prototypical structure that can incorporate observed
phenomena. People often react very rapidly and effectively to incoming stimuli.
Recognizing a familiar face (for example) seems to happen almost instan-
taneously, and the speed is independent of the number of faces one knows. The
features of a face fit into slots in “face schemata,” and one of these schemata
becomes active and provides the person’s name.

Schemata are closely related to chunks. When a chess player looks at the
board, the individual pieces can fit into the slots of “chess-pattern schemata.”
These schemata then provide the names or symbols that represent the patterns in
memory, and later enable the player to retrieve the individual pieces when they
are needed. Further, a set of active schemaia can activate some higher-level
“position schema,” which provides the optional move. With the concept of
schemata in mind, we can look in more detail at how knowledge and its
organization affect problem solving.

It is now easier to think about how problem representations are formed.
Essentially, they are formed in terms of the existing schemata and the siots they
contain. If a problem is of a very familiar type, it can trigger an appropriate
problem schema; if not, some more-general schema will be triggered. In any
event, the slots in the schema control what features of the problem are incorpo-
rated into the representation; features that do not fit into a slot will be ignored.

Once a schema is triggered, a solver can decide on the solution if the
schema contains the necessary information. If it is a specific and appropriate
schema, it might contain precisely the right procedures, enabling the solver to
proceed easily and rapidiy. If it is a general schema, it might only contain a
general prescription for how to proceed. In this situation the solver will have to
search for procedures which fit the given problem and the general prescription.
The solution wili then be much more difficult to achieve, and may be impossible
to achieve if the proper procedures can not be found. If an inappropriate schema
is somehow triggered, the solver will not make any progress at all. Thus the
importance of the knowledge structure, how it is organized into schemata,
becomes clear. It is the organization and structure provided by schemata that
altom relevant knowledge to be found in memory. Thus either lack of knowledge
or lack of access to knowledge because of inadequate structure may be the
reason for failure to solve a problem. _

There is some experimental support for this interpretation. For instance,
Hinsley et al. (1978) asked high school and college students to classify 76
algebra problems in any way thev wished. There was considerable agreement
among the students on the types of categories. Problems were grouped that
would be solved in the same way, such as triangle problems, ratio problems, and
rnver-current problems. Furthermore, students could classify these problems
after hearing onlv the first sentence. For example, a problem starting with “john
walked three miles east and then four miles north” could readily be classified a¢
atriangle problem, that is. one using the Pythagorean theorem for solution. The
rapidity v ith which problems are classified appears to rule out the possibility
that problem categories are identified after the students have formulated a
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solution. Instead, it is suggested that the problems were indeed triggering some
appropriate schemata in memory. .

The existence of specific schemata can also be uncovered by showing how
they can be mistakenly accessed. For example, poorer students, in particular,
will classify problems erroneously if they contain “cover stories” that trigger a
specific schema (Silver, 1981). A problem used by Hinsley etal. (1978) might be
mistakenly identified as a triangle problem, even though itis actually a distance-
rate-time problem, because irrelevant information about the triangular relation
between the three problem elements has been introduced. Good students were
not fooied, however. ‘

A similar contrast was found by Chi et al. (1981). Students who had
completed introductory physics with an A grade and physics instructors both
grouped typical physics problems. The students tended to group problems that
contained similar physical entities (as shown in Figure 10.5), whereas the
instructors grouped problems according to the underlying principle (as shown in
Figure 10.6). These studies show that good problem solvers are not fooled by the
superficial features of a problem statement.

The results of these categorization studies, which show that good problem
solvers are not deceived by cover stories, indicate that the skill of expert problem
solvers arises from the complexity and completeness of their schemata. Their
schemata must contain rules that are more complex than simple linking of
superficial (or primary) cues in the problem statement with solution procedures.
The schemata of the novice learners may be developed initially with these
simple rules, but in order for novices to learn not to be misled by cover stories,
they must also develop secondary knowledge (Chi et al., 1981), that is, know-
ledge that incorporates the interaction between the primary cues in the problem
statement. Hence, a complete schema must contain not only the procedures
(such as the equation to compute the hypotenuse of a triangle), but also the
primary and secondary cues needed to identify the problem type appropriately.

Another way to illustrate these separate components of schemata is to use
problem isomorphs. These are sets of problems whose underlying structures and
solutions are all the same, but whose context can be quite different. An example
of a problem isomorph is the tea ceremony (Hayes and Simon, 1974). In it, three
people are conducting an oriental tea ceremony, and they must distribute
responsibility for various parts of the ceremony among themselves according to
centain rules In actuality, this puzzle is the familiar Tower of Hanoi, with the
pegs replaced by people, and the disks by parts of the ceremony. Anyone who is
familiar with the Tower problem and who notices the correspondence can solve
the Tea Ceremony quite easily. However, studies show that virtually no one
notices the similarity. One way to interpret this finding is that the slots of the
Tower of Hanoi schema were designed specifically for pegs and disks. When
people and ceremonies were presented instead, the Tower of Hanoi solution
schema was therefore not accessed, even though it contained very efficient
procedures for sol/ing the tea-ceremony puzzle.

In sum, studies on the solution of problems where a great deal of domain
knowledge is involved indicate clearly that a very relevant part of success in
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Diagrams depicted from problems Novices' explanations for their similarity
categorized by novices within the same  groupings ‘

Sroups
Problem 10 (11) Novice 2: “Angular velocity, momen-
tum, circular things”
Novice 3: “Rotational kinematics, angu-
) ‘ lar speeds, ahgular veloci-
ties” o
E 3 Novice 6: “Problems that have some-
thing rotating; angular
speed”
Prcolem 11 (39) ) {
‘l
Ey-el
E%\u
S oM
Problem 7 (23) L “ Novice 1: “These deal with blocks on
21b Ve an inclined plane”
Novice 5: *Inclined-plane problems,
coefficient of friction”
p=.2 Novice 6: “Blocks on inclined planes
with angles”
vl
Problem 7 (35)
AR

Figure 10.5
Examp'es from novices’ problem categories. Problem numbers represent problem

and chapter number from Malliday and Resnick.(1974; (Taken from Chi, Feltovich, and  *
Claser. 1981
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Diagrams depicted from problems Experts’ explanations for their similarity
categorized by experts within the same groupings
_groups

Problem 6 {21) Expert 2: *Conservation of Energy*

) Expert 3: “Work-Energy Theorem. They
6m are aldstraight forward prob-
lems.”

———=d Expert 4: “These can be done from
— energy considerations. Either
‘ Equilibrum you should know the Princi-
: ple of Conservation of Erer-
8y, or work is lost some-
where.”

K = 200 ntjm }

X

Problem 7 (35)

Problem 5 (39) Expert 2: *These can be solved by New-
ton’s Second Law”

Expert 3: *F = ma; Newton's Second
Law”

Expert 4: *Largely use F = ma; New-
ton’s Second Law”

Problem 12 (23)

SEna—
Figure 10.6
Example from experts’ problem categories Problem numbers represent problem

and chapter number from Halliday and Resnick (19741, (Taken from Chi.Feltovich, and
Glaser. 1981
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problem solving is the ability to access a large boc'y of well-structured domain
knowledge. Thergfore, one important direction of current research is to explore
how a large body of knowledge is organized and represented, so that it can be
easily accessed for successful solving of problems.

1l1-Defined Problems

Perhaps the best way to define an ill-defined problem is by default. That is,
problems which do not fall into the class of well-defined problems, such as those
that have been studied and described in the preceding discussion, may be
considered ill-defined problems. One framework that can be used to concep-
tualize ill-defined problems draws on the information-processing approach we
mentioned earlier in discussing puzzle problems. In that framework. a problem
has a clear initial state, a set of permissible operators, and a goal state. A problem
qualifies as i/l-defined if any one or all of the three components are not well
specified.

for example, the initial state may be vague, as in economics problems.
Our economy is so complex that we really do not understand it very well. For
any given economics problem, we have only a partial picture of the initial state,
based on all the various statistics the government and other agencies collect. Not
only do we have incomplete data to describe the initial state, but even profes-
sional economists cannot agree on the interpretation of the statistics that we do
have.

A problem can also be considered ill defined if the operators are not well
specified. In our economics problem, the various actions that might be taken to
modify the initial state are not clear, and many possible actions have not yet
even been formulated.

Finally, the problem is ill defined if the goal state is not clear. What
conditions of controlled inflation and unemployment are to be attained? How
much is too much? As you know, experts disagree vehemently on the answer to
these questions. In fact, one prominent characteristic of the ill-defined problem
is that there is generally a lack of consensus even among experts about what the
appropriate solution is.

There has been very little research done on ill-structured problems. One
interesting piece of work, recently conducted by Voss and his associates (Voss et
al. 1983a. Voss et al., 1983b), used problems.from the social sciences, much
ke the economics problem we have just described. Imagine you are the
Minister of Agriculture for the Soviet Union. Crop productivity has been too low
for the past several vears. What would you do to increase crop production? This
ill-structured problem has all the components unspecified. The initial state is far
more complicated than just bad crops. Among other things, the Soviet political
svstem, current agricultural methods, the amount of arable land, and the weath-
er are all part of it. The task is to find some actions or operations that might
improve the situation, but there is no mention at all of what they might be. And,
finallv, the goal ' vaguelv stated. How much of an increase is an appropriate
goal? 5 percent? 20 percent? 200 percent!
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In ¢ der to try to disentangle the various effects of knowledge, Voss and
colleagues used subjects who were political scientists specializing i the Soviet
Union, students who were taking a political-science course on Soviet domestic
policy, and chemistry professors. Not surprisingly, they found strong knowledge
effects. The most comprehensive and detailed solutions were produced by the
Soviet experts, and the worst were produced by the students and the chemists.
About 24 percent of the solution protocols of the Soviet experts focused on
elaborating the initial state of the problem, as opposed to 1 percent for the
students and the chemists. .

Prominent in the experts’ protocols at the initial phase of problem solving
were the identification of possible constraints, such as the Soviet ideology and
the amount of arable land. Defining constraints will provide a means of testing
possible solutions, such as fostering private competition (a capitalist solution) or
increasing planting, which can be rejected immediately under these constraints.

The obvious way to solve a problem of this sort is to eliminate its causes; so
itis important to enumerate causes in the problem representation. if you realize
that there are a series of separate causes, you will naturally decompose the
problem into subproblems, that is, use subgoaling. All the subjects, from expert
to novice, used this strategy. The differences, however, were that the experts
tended to create a few very general subproblems that might encompass several
related causes, whereas the novices related solutions very directly 10 individual
causes. For instance, one expert identified the Soviet bureaucracy, the attitudes
of the peasants toward agricultural practices, and the lack of infrastructure
(railroads, fentilizer plants, fuel-distribution networks, etc.) as the main subprob-
lems. In the most extreme examples of this tendency, the problem was recast
into a single “subproblem,” such as inadequate technological development.

There are at 1east two conclusions we can draw from this research. First,
even in dealing with ill-defined problems, solvers use heuristics not unlike
those, such as subgoaling, that they use in well-defined problems. Second, the
very nature of ill -defined problems means that solvers define the problems better
for themselves. This siuggests that knowledge of the problem domain really
makes it easier for a solver to define the problem, such as in identifying the
constraints. For example, Reitman (1965) found from his protocols of a compos-
er writing a fugue that, at any moment in time, the composer was really dealing
with a very weli-defined subproblem, even though the subproblem required
some initial work to define it

Because ill-defined problems require this special component, that is, a
process for adding information to the problem situation, sometimes people refer
to the solution of these problems as a creative act (Newell et al., 1964). Another
name for a creative act is insight. This term often seems to imply that the solution
was achieved in one single step, rather than in a series of discrete transforma-
tions, as happens with well-defined problems. The two-string problem we
mentioned earlier seems to match this description. However, contemporary
research is just beginning to explore the process of insight. and it appears that
insight itsell can be decomposed into several component processes. such as
encoding the information in a selective way combining information in a nove!

24



?
§
{

g

I

248 PROBLEM-SOLVING ABILITY

|

way, or comparing certain aspects of two objects (Sternberg and Davidson,
1983). For example, Fleming's discovery of penicillin required him to notice that
the bacteria in the vicinity of a moldy dish containing a culture that had been
destroyed. We could therefore say that Fleming was simply more insightful
creative than the other researchery. However, encoding information seiectively
requires that a person know which piece of information is relevant=Zhat is,
Fleming must have had some s: red knowledge that only certain potent sub-
stances could destroy bacteria. Two tentative conclusions can thus be gleaned
from the current preliminary rese#rch. First, creative and insightiul acts may not
necessarily be discrete and unitary; they may actually be composed of a se-
quence of subprocesses. Second, the execution of these subprocesses in an
apparently creative way may require some existing siored knowledge.

Sumraary ,‘

Qver the years, psychologists have learned a lot about the nature of the
problem-salving process. The importance of the initial representation of a
problem was discovered quite a fevs years ago by the Gestalt school in its
examination of insight problems. The actual nature of initial representations and
their influence on problem -olving was made clear only in the last few decades,
however, when the notion of a solution space was developed. Not too long ago ..
researchers, especially those in artificial intelligence, thought that effective
problem solving might result mainly from applying general strategies for guiding
a searching process through problem spaces. Early attempts to create computer
programs to solve problems, such as the General Problem Solver, took th.s
approach. :

As we have seen, though, this picture of problem solving has recently been
shown to be far too simple; Specific knowledge of a domain is of overriding
importance in the effective solution of problems. In addition, this knowledge
must be well-structured, so that reievant knowledge can be accessed at the
proper time. Research is beginning to uncover just what “well structured”
means, but considerable work is left to be done on how we can retrieve
information in a rapid and effective manner from the wealth of knowledge we all
POssess, /

Even more work needs to be done on the kinds of problems that are
probably the most important to us: ill-structured, real-world problems. The
process of solving such problems is difficult, complex, and thus difficult to study,
especially because it is gften not clear whether an ill-stru.:tured problem has
been solved. In addition, the most important real-world problems are often
solved (or made worse) by means of complex (and little understood) social
interactions.
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